Pharmacogenomics

Image

Introduction

Pharmacogenomics is the study of the role of the genome in drug response. Its name reflects its combining of pharmacology and genomics. Pharmacogenomics analyzes how the genetic makeup of an individual affects his/her response to drugs. It deals with the influence of acquired and inherited genetic variation on drug response in patients by correlating gene expression or single-nucleotide polymorphisms with pharmacokinetics (drug absorption, distribution, metabolism, and elimination) and pharmacodynamics (effects mediated through a drug's biological targets).

The term pharmacogenomics is often used interchangeably with pharmacogenetics. Although both terms relate to drug response based on genetic influences, pharmacogenetics focuses on single drug-gene interactions, while pharmacogenomics encompasses a more genome-wide association approach, incorporating genomics and epigenetics while dealing with the effects of multiple genes on drug response.

Pharmacogenomics is the study of how genes affect a person’s response to drugs. This relatively new field combines pharmacology (the science of drugs) and genomics (the study of genes and their functions) to develop effective, safe medications and doses that will be tailored to a person’s genetic makeup.

The field of pharmacogenomics is still in its infancy. Its use is currently quite limited, but new approaches are under study in clinical trials. In the future, pharmacogenomics will allow the development of tailored drugs to treat a wide range of health problems, including cardiovascular disease, Alzheimer disease, cancer, HIV/AIDS, and asthma.

Mechanism of action

Drug Receptors: Some drugs need to attach to proteins on the surface of cells called receptors in order to work properly. Your DNA determines what type of receptors you have and how many, which can affect your response to the drug. You might need a higher or lower amount of the drug than most people or a different drug.

Drug Uptake: Some drugs need to be actively taken into the tissues and cells in which they act. Your DNA can affect uptake of certain drugs. Decreased uptake can mean that the drug does not work as well and can cause it to build up in other parts of your body, which can cause problems. Your DNA can also affect how quickly some drugs are removed from the cells in which they act. If drugs are removed from the cell too quickly, they might not have time to act.

Targeted Drug Development: Pharmacogenomic approaches to drug development target the underlying problem rather than just treating symptoms. Some diseases are caused by specific changes (mutations) in a gene. The same gene can have different types of mutations, which have different effects. Some mutations may result in a protein that does not work correctly, while others may mean that the protein is not made at all. Drugs can be created based on how the mutation affects the protein, and these drugs will only work for a specific type of mutation.

Standard genetic testing is a type of testing that searches for specific genes. For example, a test may look for BRCA1 and BRCA2 genes, which are linked with a higher risk of breast and ovarian cancer. The results from standard genetic test may prompt preventive or risk reduction steps.

The Journal of “Clinical Pharmacology and Toxicology Research” is using Editorial Tracking System to maintain quality and transparency to the author in the peer-review process. Review processing will be performed by the editorial board members of the Journal of “Clinical Pharmacology and Toxicology Research” or by Reviewers (outside experts in the field). Two independent reviewer’s approval (Minimum reviewer’s approval) followed by editor approval is obligatory for acceptance of any manuscript excluding an editorial.

Regards

Mary Wilson

Editorial office

Clinical Pharmacology and Toxicology Research

E-mail: pharmatoxicol@eclinicalsci.com